Gal(Qp/Qp) as a geometric fundamental group

نویسنده

  • Jared Weinstein
چکیده

Let p be a prime number. In this article we present a theorem, suggested by Peter Scholze, which states that Gal(Qp/Qp) is the étale fundamental group of a certain object Z which is defined over an algebraically closed field. This object is the quotient of the “punctured perfectoid open disk” by an action of the group Qp . The proof of this fact combines two themes: the tilting equivalence for perfectoid spaces, and the Fargues-Fontaine curve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON A GEOMETRIC DESCRIPTION OF Gal(Q̄p/Qp) AND A p-ADIC AVATAR OF ĜT

We develop a p-adic version of the so-called Grothendieck-Teichmüller theory (which studies Gal(Q̄/Q) by means of its action on profinite braid groups or mapping class groups). For every place v of Q̄, we give some geometrico-combinatorial descriptions of the local Galois group Gal(Q̄v/Qv) inside Gal(Q̄/Q). We also show that Gal(Q̄p/Qp) is the automorphism group of an appropriate π1-functor in p-adi...

متن کامل

Selmer varieties for curves with CM Jacobians

We study the Selmer variety associated to a canonical quotient of the Qp-pro-unipotent fundamental group of a smooth projective curve of genus at least two defined over Q whose Jacobian decomposes into a product of abelian varieties with complex multiplication. Elementary multivariable Iwasawa theory is used to prove dimension bounds, which, in turn, lead to a new proof of Diophantine finitenes...

متن کامل

A Note on Potential Diagonalizability of Crystalline Representations

Let K0/Qp be a finite unramified extension and GK0 denote the Galois group Gal(Qp/K0). We show that all crystalline representations of GK0 with Hodge-Tate weights ⊆ {0, · · · , p− 1} are potentially diagonalizable.

متن کامل

REPRÉSENTATIONS p-ADIQUES ET NORMES UNIVERSELLES I. LE CAS CRISTALLIN

Soit p un nombre premier impair, K = Qp et soient Kn = Qp(μpn) le corps des racines p-ièmes de l’unité dans une clôture algébriqueQp de Qp, K∞ la réunion des Kn et G∞ = Gal(K∞/K). Soit une courbe elliptique E définie sur Qp. Si E(Kn) est le groupe des points de E définis sur Kn, la limite projective des E(Kn) pour les applications de trace a d’abord été étudiée lorsque E a bonne réduction ordin...

متن کامل

O ct 2 00 8 ON SOME MODULAR REPRESENTATIONS OF THE BOREL SUBGROUP OF GL 2 ( Q p )

— Colmez has given a recipe to associate a smooth modular representation Ω(W ) of the Borel subgroup of GL2(Qp) to a Fp-representation W of Gal(Qp/Qp) by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W ) explicitly and we prove that if W is irreducible and dim(W ) = 2, then Ω(W ) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016